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Abstract We derive spin operator matrix elements between general eigenstates of the su-
perintegrable ZN -symmetric chiral Potts quantum chain of finite length. Our starting point
is the extended Onsager algebra recently proposed by Baxter. For each pair of spaces (On-
sager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin
matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factor-
ized form, up to an overall scalar factor. This factor is known for the ground state Onsager
sectors. For the matrix elements between the ground states of these sectors we perform the
thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum
chain in a transverse field (N = 2 case) the factorized form for the matrix elements coin-
cides with the corresponding expressions obtained recently by the Separation of Variables
method.

Keywords Quantum integrable spin chain · Chiral Potts model · Order parameter ·
Onsager algebra

1 Introduction

The solution of the Ising model by Onsager [1] in 1944 was a major breakthrough in mathe-
matical physics. The subsequent calculation of the Ising magnetization by Yang [2] in 1952
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(after the announcement of the formula by Onsager [3] in 1949) was an achievement of
similar importance. The main tool in Onsager’s work [1] was the introduction of the alge-
bra which now carries his name. Later many alternative methods for solving the Ising model
were invented and the interest in Onsager’s algebra faded away. It was not revived until 1985
when the superintegrable chiral Potts quantum chain (SCPC) was formulated [4]. For more
than 40 years the Ising model had remained the only known representation of Onsager’s
algebra. Then the SCPC provided a whole series of new Onsager algebra representations.
In many respects, the SCPC is the ZN generalization of the Z2 Ising model. Soon, in 1988,
Baxter [5] calculated the partition function of the SCPC, using functional relations of the
2-dimensional integrable chiral Potts model [6, 7]. The formula for the order parameter of
the SCPC (the generalization of the famous Onsager–Yang result for the Ising model) was
conjectured slightly earlier in 1988 by Albertini-McCoy-Perk-Tang [8] from a perturbative
calculation up to k′5 for arbitrary N (see also [9]). However, it took until 2005 that Baxter
[10, 11] succeeded to prove the conjectured formula. His derivation used functional relations
for the τ2-model and natural analytical assumptions.

Nevertheless, Baxter [12] insisted that a purely algebraic derivation of the order parame-
ter formula would be desirable. So, recently, he extended the Onsager algebra by a SCPC-
spin operator [13]. One has to include many new operators which are produced by commuta-
tions with the generators of the Onsager algebra. R. Baxter conjectured that the two simplest
relations in the extended Onsager algebra uniquely define (up to a common multiplier) the
matrix elements of the spin operator between vectors from the ground state Onsager sec-
tors. Recently he proved that this conjecture implies the determinant representation [14] and
obtained, in the thermodynamic limit, the formula for the order parameters [15].

Our starting point for this research was that we compared Baxter’s conjectured equation
(3.45) of [13] to the factorized formula (78) in [16] for the Ising quantum chain spin operator
matrix elements which we had obtained by the method of Separation of Variables. In the
case of the Ising chain, after a simple transformation given in Sect. 4.1 of the present paper,
(3.45) of [13] should imply (78) of [16]. Since Baxter’s conjecture was formulated for the
arbitrary parameters, it was natural to suggest that the factorized formula (78) in [16] for
the ground Onsager sectors is valid also for the ground Onsager sectors in SCPC if one uses
appropriate parameters labelling these sectors. Numerical calculations for the finite length
chain together with calculations for the thermodynamic limit (see Appendix C) strongly
supported our conjecture. This encouraged us to prove the Baxter’s conjecture (3.45) from
[13].

In the present paper we generalize this conjecture to arbitrary Onsager sectors and prove
it. We found that the matrix elements of spin operators between the eigenvectors of the
SCPC Hamiltonian for arbitrary Onsager sectors can be presented in a factorized form. The
problem of finding the matrix elements of the spin operator is reduced to the problem of
finding non-zero matrix elements of the spin operator between some particular vectors from
the corresponding two irreducible representations of the Onsager algebra. In the case of
ground state Onsager sectors this gives an exact factorized formula for the matrix elements
of spin operators between such type eigenvectors. Finally, taking the thermodynamic limit
of ground states matrix elements, we derive the Albertini et al. formula [8, 9] for the order
parameters. We would like to note that factorized formulas for the spin matrix elements exist
also for the 2D Ising model [17] and for the quantum XY -chain [18].

Recently, state vectors for the superintegrable chiral Potts model were investigated ex-
ploiting the sl(2)-loop algebra symmetry of the τ2-model [19, 20], which is closely related
to the chiral Potts model [21–26]. Since our approach avoids direct use of the relation to the
τ2-model, we shall not go into details of this exciting work.
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This paper is organized as follows: In Sect. 2 we define the SCPC by its Hamiltonian and
use the fact that its two parts generate the Onsager algebra and imply the Ising form of the
eigenvalues. Baxter’s extension and the basic two resulting equations for the spin operator
are stated. In Sect. 3 we develop the consequences of Baxter’s two equations for spin matrix
elements: including higher Onsager sectors and in several steps fixing the explicit solution.
Specializing to the ground state sector, we show that our result coincides with Baxter’s con-
jecture. The section ends with the discussion of some non-trivial selection rules for the spin
matrix elements. In Sect. 4 we sandwich the expression for the spin operator between eigen-
vectors of the Hamiltonian. The sum over the intermediate labels is performed explicitly,
resulting in fully factorized expressions. Finally, performing the thermodynamic limit in
Sect. 5, the formula for the order parameters is obtained. Section 6 summarizes our results.
Technical details about performing the factorization and the thermodynamic limit are given
in Appendices A–C, together with a numerical example.

2 The Superintegrable Chiral Potts Quantum Chain

2.1 The Hamiltonian of the Superintegrable Chiral Potts Quantum Chain

The superintegrable ZN -symmetric chiral Potts quantum chain of length L is defined by the
Hamiltonian [4]

H = H0 + k′H1, (1)

where k′ is a temperature-like real parameter, ω = e2π i/N ,N ∈ Z,N ≥ 2, and

H0 = −2
L∑

j=1

N−1∑

n=1

Zn
j Z

−n
j+1

1 − ω−n
, H1 = −2

L∑

j=1

N−1∑

n=1

Xn
j

1 − ω−n
. (2)

The space of states is the L-fold tensor product of spaces C
N at each site j . The operators

Zj ,Xj ∈ End (CN)⊗L act non-trivially only at site j :

Zj = 1 ⊗ · · · ⊗ 1 ⊗ Z︸︷︷︸
j-th

⊗1 ⊗ · · · ⊗ 1,

Xj = 1 ⊗ · · · ⊗ 1 ⊗ X︸︷︷︸
j-th

⊗1 ⊗ · · · ⊗ 1.

Z and X are the ZN -generalizations of the Z2-Pauli operators σz and σx . They satisfy the
Weyl relation ZX = ωXZ and ZN = XN = 1. We always take periodic boundary conditions
ZL+1 = Z1. A convenient representation is to label the state vectors by spin variables σj ∈
ZN, j = 1, . . . ,L, writing the state vectors as |σ1, σ2, . . . , σL〉 and

(Zj )σj ,σ ′
j
= δσj ,σ ′

j
ωσj , (Xj )σj ,σ ′

j
= δσj ,σ ′

j
+1. (3)

Both H0 and H1 commute with the spin rotation operator R = X1X2, . . . ,XL. Since RN =
1, the space of states of SCPC decomposes into sectors of fixed of ZN -charge Q where
Q = 0,1, . . . ,N − 1, corresponding to the eigenvalues ωQ of the R.

It turns out [27] that for N = 3 and 0 ≤ k′ < 0.901 . . . we are in the ferromagnetic regime,
where in the thermodynamic limit the system acquires a non-zero value of the order para-
meters. One aim of this paper is to derive its value as a function of k′.
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The Hamiltonian (1) can be derived as a logarithmic derivative with respect to a rapidity
parameter from the homogeneous 2D superintegrable chiral Potts model. However, we shall
avoid using properties of the two-dimensional model.

2.2 The Onsager Algebra and the Superintegrable Chiral Potts Quantum Chain

In the beginning of the 1980’th chiral Potts quantum chains received much attention since
for certain parameter values they exhibit an incommensurate phase. Since no chain of this
class was known to be integrable, Howes, Kadanoff and den Nijs [28] studied perturbative
expansions. They found strong evidence that the Z3 version of (1) has a terminating low-
temperature expansion for the mass gap. Subsequent numerical studies in [4] showed: if in
the ZN -symmetric quantum chain the coefficients of the terms involving ZjZj+1 and Xj are
chosen as in (2), many gaps become linear. This feature is known from the Ising model and
motivated further studies of the Hamiltonian (1), (2). Now is was known that Hamiltonians
of the form H ∼ A0 + k′A1 are integrable if A0 and A1 satisfy the Dolan-Grady-relations
[29]

[
Aj ,

[
Aj ,

[
Aj,A1−j

]]] = 16
[
Aj ,A1−j

]
, j = 0,1. (4)

Indeed, in [4] it was shown that, putting

A0 = −2H1/N, A1 = 2H0/N

the relations (4) are satisfied. As has first been pointed out by Perk [30], a pair of operators
A0,A1 satisfying (4) generates a basis of Onsager’s infinite dimensional Lie-algebra with
the operators Am,m ∈ Z, Gn,n ∈ N :

[Am,An] = 4Gm−n, G−n = −Gn,
(5)

[Gm,An] = 2Am+n − 2An−m, [Gm,Gn] = 0.

The study of the representation theory of the Onsager algebra has been started by Davies
[31]. He showed that certain finite-dimensional representations of the Onsager algebra are
related to representations of a direct sum of several copies of the Lie algebra sl(2), see
also [32–34]. In the case of the SCPC only two-dimensional representations of sl(2) appear.
Unlike the N = 2 Ising case, for N ≥ 3 the Onsager algebra alone is not powerful enough
to fully determine the eigenvalues. However, in each Onsager sector of the SCPC the 2mE

eigenvalues of H have the Ising-like form

E = A + k′B − N

mE∑

j=1

±ε(θj ), (6)

with

ε(θ) =
√

1 − 2k′ cos θ + k′2. (7)

The constants A and B and the mE values θj label irreducible representations of the Onsager
algebra.

Using functional relations which follow from the general integrable 2-dimensional chiral
Potts model [20], or, recently, exploiting the loop symmetry of the related τ2-model [21],
the θj can be calculated from the zeros of the Baxter-Albertini-McCoy-Perk (BAMP) poly-
nomials [5, 35, 36]. However, here we shall follow the spirit of Baxter’s recent work and
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determine the spin-operator matrix elements from the Onsager algebra and an extension of
this algebra alone. So, the θj will be considered as free parameters. Of course, specific val-
ues of the θj calculated from the zeros of the BAMP-polynomials may be inserted in the
final formulas.

2.3 Extension of the Onsager Algebra by a Spin Operator

In [13] Baxter considered commutators of H0 and H1 with the local spin operator S = Zr
1

where r may be chosen to take the values r = 1, . . . ,N −1 (because of the periodic boundary
conditions we may choose the site index 1). He introduced two operations on operators X

in the space of states

f0(X) = [H0,X]
2N

, and f1(X) = [H1,X] + 2rX

2N
(8)

and has shown that

f0(S) = 0, and f1(f1(S)) = f1(S). (9)

Repeated commutation of S with H0 and H1 produces many new elements. However, Baxter
made the conjecture that in the case when the finite-dimensional representations of Onsager
algebra are related to two-dimensional representations of sl(2) (in particular, in the case of
SCPC) already the mentioned two relations for S uniquely (up to a multiplier because the
relations are homogeneous) define the matrix elements of S. In the following section we
prove this conjecture.

3 Conjecture on the Reduced Matrix SPQ: a Generalization, Reformulation
and a Proof

3.1 Generalization

We consider the restrictions of the Hamiltonian H to the subspaces which are spaces of
irreducible representations of the Onsager algebra. We shall call these subspaces Onsager
Sectors. Let V P , V Q be some Onsager sectors with ZN -charges P , Q and dimensions 2mP

E ,

2m
Q
E , respectively. We will use the short notations m = mP

E , n = m
Q
E . From [22, 31, 36] we

know that on such a subspace, the restricted Hamiltonian HV P has an Ising-like spectrum of
the form (6), (7).

Now we write a Hamiltonian HV P (we shall use the short notation HP ), which has the
eigenvalues (6), (7):

HP = HP
0 + k′HP

1 , HP
0 = AP − NFP

0 , HP
1 = BP + NFP

1 , (10)

where AP and BP are some constants depending on this Onsager sector and

FP
0 =

m∑

j=1

(
1 0
0 −1

)

j

, F P
1 =

m∑

j=1

(
cos θj sin θj

sin θj − cos θj

)

j

. (11)
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We write analogous formulas for the sector V Q with charge Q and with parameters θ ′
j ,

j = 1,2, . . . , n:

F
Q

0 =
n∑

j=1

(
1 0
0 −1

)

j

, F
Q

1 =
n∑

j=1

(
cos θ ′

j sin θ ′
j

sin θ ′
j − cos θ ′

j

)

j

. (12)

Using the fact that H0 and H1 are block-diagonal with respect to irreducible representations
of the Onsager algebra and taking the formulas (8) between arbitrary states from V P and
V Q, we obtain

f0(XPQ) = −1

2
(FP

0 XPQ − XPQF
Q

0 + αXPQ), (13)

f1(XPQ) = 1

2
(FP

1 XPQ − XPQF
Q

1 + (β + 1)XPQ), (14)

where XPQ is a rectangular submatrix in X and

α = (AQ − AP )/N, β = (BP − BQ + 2r − N)/N, (15)

and we define r = Q − P for P < Q and r = Q − P + N for P > Q. The corresponding
eigenvectors of HP ,HQ are easily obtained and will be given in (55)–(57).

We are interested in matrix elements of the spin operator S = Zr
1. In the basis of dis-

tinct Onsager irreps S is a block matrix. Since S changes the ZN -charge, it has vanishing
diagonal blocks, but it can have non-zero blocks between spaces V P and V Q of equal or
different dimensions 2m and 2n. So, in general, one particular submatrix (block) SPQ will be
a rectangular 2m × 2n-matrix.

From (9), (13)–(15) decomposed into Onsager sectors, the submatrix SPQ will be pro-
portional to a solution C of the pair of equations

FP
0 C − CF

Q

0 + αC = 0, (16)

FP
1 FP

1 C − 2FP
1 CF

Q

1 + CF
Q

1 F
Q

1 + 2β(FP
1 C − CF

Q

1 ) + (β2 − 1)C = 0. (17)

The FP
0 , F

Q

0 , FP
1 , F

Q

1 are given above and α, β are supposed to be arbitrary constants.
Formulas (13), (14), (16), (17) generalize Baxter’s relations from [13] which were written
only for ground state Onsager sectors.

The system of (16), (17) is homogeneous and any solution of this system multiplied by a
constant is also a solution. We will find a solution CPQ of the system (16), (17) and show that
the space of solutions is no more than one-dimensional. Therefore exact1 matrix elements
SPQ of the spin operator S = Zr

1 are related to this solution by the relation SPQ = NPQCPQ

with an unknown scalar multiplier NPQ, which should be fixed from other arguments. The
other relations of the extended Onsager algebra do not spoil the equality SPQ = NPQCPQ,
but they may impose that NPQ = 0.

1In the following the term “exact matrix elements” will be used in the sense that the constants NPQ have
been determined too.
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3.2 Reformulation

Multiplying the relations (16), (17) from the right by

G =
n∏

j=1

σ x
j σ z

j , (18)

using F
Q

0 = −G−1F
Q

0 G, F
Q

1 = −G−1F
Q

1 G and denoting C̃ = CG, we get similar relations
but with changed signs at F

Q

0 and F
Q

1 :

FP
0 C̃ + C̃F

Q

0 + αC̃ = 0, (19)

FP
1 FP

1 C̃ + 2FP
1 C̃F

Q

1 + C̃F
Q

1 F
Q

1 + 2β(FP
1 C̃ + C̃F

Q

1 ) + (β2 − 1)C̃ = 0. (20)

Let us combine the matrix elements C̃γ,β into a vector K̃ ∈ V P ⊗ V Q with components
K̃(γ,β) labelled by multi-indices. The vector K̃ has dimension 2μ, where μ = m + n. Let for
k = 0,1

Fk = FP
k ⊗ 1 + 1 ⊗ (F

Q
k )t (21)

be an operator in V P ⊗ V Q and (F
Q
k )t is the transposition of F

Q
k . Then the relations (19)

and (20) become

(F0 + α)K̃ = 0, (F1 + β − 1)(F1 + β + 1)K̃ = 0. (22)

This procedure puts the parameters {θj } and {θ ′
j } on an equal footing: we combine these two

sets into the set

{ϑ1, . . . , ϑμ} = {θ1, . . . , θm, θ ′
1, . . . , θ

′
n}. (23)

Since the matrices F0 and F1 are both traceless with determinant −1 we can find a simi-
larity transformation F1 = Ũ−1F0Ũ to get

(F0 + β − 1)(F0 + β + 1)ŨK̃ = 0, (24)

where

Ũ = UUd, U =
μ∏

j=1

(
cosϑj + 1 cosϑj − 1

1 1

)

j

, Ud =
μ∏

j=1

(
1 0
0 − cot(ϑj/2)

)

j

.

(25)

It gives finally two relations for the vector K = UdK̃ :

(F0 + α)K = 0, (F0 + β − 1)(F0 + β + 1)UK = 0, (26)

where we use the fact that F0 commutes with Ud . In the next two subsections we will solve
the system of (26) with respect to K for arbitrary parameters α, β .
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3.3 Number of Solutions of (26)

The relations (26) are a system of linear homogeneous equations with respect to the un-
known components of K . In this subsection we estimate the number of solutions of this
system, depending on α and β . We use the notation F = F0.

Theorem 1 The dimension of the space of solutions K of the system

(F + α)K = 0, (27)

(F + β − 1)(F + β + 1)UK = 0, (28)

where

F =
μ∑

j=1

(
1 0
0 −1

)

j

, U =
μ∏

j=1

(
cj + 1 cj − 1

1 1

)

j

(29)

at generic values of the parameters ck = cosϑk , k = 1, . . . ,μ, is no more than one-
dimensional. It is one-dimensional if and only if

• μ is even, α = 0, β = ±1, (30)

• μ is odd, α = ±1, β = 0. (31)

Proof The spectrum of F is μ,μ − 2, . . . ,−μ. From the first relation (27) we have a nec-
essary restriction on α in order to have K 	= 0: α should be an integer of the same parity
as μ, and |α| ≤ μ. If α satisfies this condition, the space of solutions of (27) has dimen-
sion

( μ

(μ+α)/2

)
. The second relation (28) requires the existence of such K from this subspace

which are annihilated by the operator (F +β −1)(F +β +1)U . Thus, to have K 	= 0, μ+β

should be an odd integer and |β| ≤ μ + 1. Otherwise, since U is invertible, we would have
that (F + β − 1)(F + β + 1)U is also invertible and therefore K = 0.

We will prove the theorem by induction over μ. Let F = F(μ) be the initial matrix. In a
basis in which the μ-th tensor component is separated, we have

F(μ) + α = F(μ−1) +
(

1 0
0 −1

)

μ

+ α =
(

F(μ−1) + α + 1 0
0 F(μ−1) + α − 1

)
.

It is a diagonal matrix and the zeros on its diagonal define the space of solutions of (27). Let
P(μ)(α) be the projector to this subspace. Its rank is

rk P(μ)(α) =
(

μ

(μ + α)/2

)
.

In the basis with separated μ-th tensor component this projector is

P(μ)(α) =
(

P(μ−1)(α + 1) 0
0 P(μ−1)(α − 1)

)
.

We need to calculate the rank

f (μ,α,β) = rk
(
(F(μ) + β − 1)(F(μ) + β + 1)U(μ)P(μ)(α)

)
,
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since the difference

f̃ (μ,α,β) = rk P(μ)(α) − f (μ,α,β) ≥ 0

defines the dimension of the space of solutions of the system of (27) and (28).
Extracting explicitly the μ-th tensor component we have

f (μ,α,β) = rk

(
A B

C D

)
,

where

A = (cμ + 1)(F(μ−1) + β + 2)(F(μ−1) + β)U(μ−1)P(μ−1)(α + 1),

B = (cμ − 1)(F(μ−1) + β + 2)(F(μ−1) + β)U(μ−1)P(μ−1)(α − 1),

C = (F(μ−1) + β)(F(μ−1) + β − 2)U(μ−1)P(μ−1)(α + 1),

D = (F(μ−1) + β)(F(μ−1) + β − 2)U(μ−1)P(μ−1)(α − 1).

By f (μ,α,β) we denote the rank which is calculated at generic values of the parameters ck ,
k = 1, . . . ,μ. At some specific values of these parameters, the corresponding rank may be
smaller than at generic values. At cμ = 1 we have B = 0 and using the fact that the rank of a
block-triangular matrix is greater or equal to the sum of ranks of diagonal blocks we obtain

f (μ,α,β) ≥ rkA + rkD = f (μ − 1, α + 1, β + 1) + f (μ − 1, α − 1, β − 1). (32)

Similarly, at cμ = −1 we have A = 0 and

f (μ,α,β) ≥ rkB + rkC = f (μ − 1, α − 1, β + 1) + f (μ − 1, α + 1, β − 1). (33)

Using identities between binomial coefficients, the inequalities (32) and (33) become

f̃ (μ,α,β) ≤ f̃ (μ − 1, α + 1, β + 1) + f̃ (μ − 1, α − 1, β − 1), (34)

f̃ (μ,α,β) ≤ f̃ (μ − 1, α − 1, β + 1) + f̃ (μ − 1, α + 1, β − 1). (35)

We now show by induction in μ that

f̃ (μ,α,β) ≤ δα2+β2,1. (36)

Assuming that the binomial coefficients
(

k

l

)
are defined to be 0 if l < 0 or l > k, we can start

the induction from the case μ = 1 and arbitrary α, β . In this case, as it has been explained
in the beginning of the proof, in order to have K 	= 0 we need to choose α = ±1 and β ∈
{−2,0,2}. Let for definiteness α = 1. Then

f (1, α,β) = rk
(
(F(1) + β − 1)(F(1) + β + 1)U(1)P(1)(α)

)

=
(

(β + 2)β 0
0 β(β − 2)

)
U

(
0 0
0 1

)
. (37)

If β = 0 then f (1, α,β) = 0, otherwise f (1, α,β) = 1. Thus only if β = 0 we have
f̃ (1, α,β) = 1.

Then we assume f̃ (μ − 1, α,β) ≤ δα2+β2,1, and straightforward analysis shows that the
inequalities (34), (35) imply (36), completing the induction.
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This proves that the space of solutions K is no more than one-dimensional if α and β

satisfy the relations (30) or (31). Otherwise there is only the trivial solution K = 0. In the
next subsection we give the explicit solution for K if α and β satisfy (30) or (31). It proves
that in these cases the space of solutions is one-dimensional. �

What is the condition on the parameters ck , k = 1, . . . ,μ, which leads the theorem to
fail? The analysis for μ ≤ 3 gives that this condition is: either c1 = c2 = c3, or a pair of ck

coincide with +1 (or −1).
If both V P and V Q are ground state Onsager sectors, the θk, θ

′
k are determined by the zeros

of the ground state (i.e. with no Bethe excitations) BAMP-polynomials. For any L these
zeros are determined from the intersection of two simple curves [40]. From the behavior of
these curves it is easy to show that the ck and c′

k cannot coincide or reach ±1. So, e.g. for
the calculation of the order parameter, we are on the save side. For higher Onsager sectors
(which are also included in our consideration here) the situation is not easy, as the solutions
of Bethe-type equations enter the determination of the zeros. Here we can just conjecture
that for general μ, the corresponding condition is too restrictive and the sets ck arising in the
SCPC will not satisfy the above condition.

3.4 The Solution for the Matrix Elements

In the last subsection we proved that if a non-trivial solution K exists, then it is unique up
to a multiplier. If μ is even, such a solution exists iff α = 0 and β = ±1, if μ is odd, then iff
α = ±1 and β = 0.

We now present the solution K in the basis of eigenvectors of F . Each basis vector is a
tensor product of the two-dimensional vectors associated with summands of F in (29). We
label each basis vector by the subset I of the set {1,2, . . . ,μ}, such that the elements of I

label the tensor components where the two-dimensional basis vectors with the eigenvalue
+1 are located. The complementary subset Ī contains the labels of the tensor components
where the two-dimensional basis vectors with the eigenvalue −1 are placed. By |I | we
denote the size of the subset I .

We use a short notation: the product of an expression containing the variable c indexed
by a subset I means the product of this expression over the elements of the subset with
variable c indexed by the elements of I , e.g.

∏
(cI − cĪ ) =

∏

j∈I

∏

k∈Ī

(
cj − ck

)
. (38)

Recall that j ∈ I iff the component j of the product eigenvector F (29) belongs to the
eigenvalue +1, otherwise it is in Ī . F combines the left-hand state vectors of V P in its first
m components with the right-hand vectors V Q in its last n components, see (21). So cj will
stand for cos θj if j ≤ m and for cos θ ′

j−m for m < j ≤ n + m, see (23). Because of the
conjugation performed by G in (18), the sign of the eigenvalues in V Q is opposite to the
sign of the eigenvalues in F .

Theorem 2 Let the parameters α and β satisfy (30) or (31). The vector K with the compo-
nents

KI = δ|I |,(μ−α)/2∏
(cI − cĪ )

∏
(cI + 1)σ

∏
(cĪ − 1)τ

(39)
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is the unique (up to a scalar multiplier) solution of the system (27) and (28). Here

σ = (β − α + 1)/2, τ = (β + α + 1)/2. (40)

Remark Due to the special values of α and β , each of σ and τ can be either 0 or 1.

Proof The numerator δ|I |,(μ−α)/2 ensures that K satisfies (27).
Let us prove that K satisfies (28). In fact we need to prove that the non-zero compo-

nents of M = UK are in the eigenspaces of F with eigenvalues −β − 1 and −β + 1. The
components of the vector M = UK are

MJ =
∑

I

UJ,IKI =
∑

I

∏
(cI∩J + 1)

∏
(cĪ∩J − 1)δ|I |,(μ−α)/2∏

(cI − cĪ )
∏

(cI + 1)σ
∏

(cĪ − 1)τ
, (41)

where we used UJ,I = ∏
(cI∩J + 1)

∏
(cĪ∩J − 1) which follows from (29). The components

of M are

MJ = P∏
(cJ − cJ̄ )

∏
(cJ̄ + 1)σ

∏
(cJ̄ − 1)τ

(42)

with an unknown polynomial P in the numerator. Let us explain the origin of the different
factors in the denominator of (42). First, there are no factors like cj +1, j ∈ J in the denom-
inator of (42), because all such factors with j ∈ I in the denominator of (41) are cancelled.
Similarly, there are no factors like cj − 1, j ∈ J . Second, there are no factors like cj − cj ′ ,
j, j ′ ∈ J , in the denominator of (42). Potentially such factors can arise from summands in
(41) for which j ∈ I and j ′ ∈ Ī . But to each such summand there corresponds a summand
with I replaced by Ĩ = {j ′} ∪ I\{j}. A straightforward analysis shows that the sum of these
two summands does not contain a pole at cj = cj ′ . Similarly there are no factors like cj −cj ′ ,
j, j ′ ∈ J̄ in the denominator of (42).

Let us estimate the degree of P with respect to the variables cj , j ∈ J . It is

max(1 − σ − |Ī |,1 − τ − |I |) + |J̄ | ≥ degP ≥ 0.

The two arguments of the maximum correspond to the fact that each element of J is either
in I or in Ī . The term |J̄ | corresponds to the denominator of (42). Similarly, the estimate of
the degree of P with respect to the variables cj , j ∈ J̄ , gives

max(−σ − |Ī |,−τ − |I |) + |J | + σ + τ ≥ degP ≥ 0.

In order to get M = UK 	= 0 both inequalities have to be satisfied. Using |I | = (μ − α)/2,
|Ī | = (μ + α)/2, these give

|J̄ | ≥ (μ + β − 1)/2, |J | ≥ (μ − β − 1)/2.

Since |J | + |J̄ | = μ there are only two possibilities: |J | = (μ − β − 1)/2, |J̄ | = (μ + β +
1)/2 or |J | = (μ − β + 1)/2, |J̄ | = (μ + β − 1)/2. The corresponding eigenvalue |J | − |J̄ |
of F is −β − 1 or −β + 1, respectively. It means that K satisfies (28). The theorem is
proved. �

In order to obtain matrix elements of S = Zr
1 between the states from Onsager sectors we

need to rewrite the solution K given by (39) in the original notations.
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We will label each basis vector in V P by the subset V of the set {1,2, . . . ,m} correspond-
ing to the tensor components where the two-dimensional basis vectors with the eigenvalue
+1 of FP

0 are located. The complementary subset W contains the labels of the tensor com-
ponents for which the two-dimensional basis vectors with the eigenvalue −1 are placed. In
the same way we define the subsets V ′ and W ′ of the set {1,2, . . . , n} to label the basis
vectors in the space V Q.

We also use the set of indices {1,2, . . . ,m+n}. We will identify the indices {1,2, . . . ,m}
with indices of tensor components of V P . The rest indices {m + 1,m + 2, . . . ,m + n} of the
set {1,2, . . . ,m+n} are identified with indices {1,2, . . . , n} of tensor components of V Q by
subtraction m. This identification defines a one to one correspondence between the subsets
in {1,2, . . . ,m + n} with pairs of subsets from the sets {1,2, . . . ,m} and {1,2, . . . , n}.

Using the relation C̃ = CG with G defined in (18) and the relation K = UdK̃ with Ud

defined in (25) we have for the matrix element of C in the basis labeled by V and V ′

CV,V ′ = (−1)|V ′ |C̃V,W ′ = (−1)|V ′ |K̃(V,W ′)

= (−1)|W |KI

∏

i∈W

tan θi/2
∏

i∈V ′
tan θ ′

i /2, (43)

where I = (V ,W ′) is the subset in {1,2, . . . ,m + n} defined by the subsets V and W ′

according to the identification given above.
Note once more, that Theorem 2 defines the matrix elements (CPQ)V,V ′ by (43), (39)

as solutions of the system of homogeneous equations (16) and (17). Exact matrix elements
(SPQ)V,V ′ of the spin operator are given through the relation

(SPQ)V,V ′ = NPQ(CPQ)V,V ′ (44)

with an unknown constant NPQ which depends on both Onsager sectors.

3.5 Matrix Elements Between Ground State Onsager Sectors

For the ground state Onsager sectors we have

AP = L(1 − N) + Nm, AQ = L(1 − N) + Nn, (45)

BP = 2P + L(1 − N) + Nm, BQ = 2Q + L(1 − N) + Nn. (46)

It was argued in [13] that in the ground state Onsager sectors one has SV,V ′ = 1 for
W = ∅, W ′ = ∅. In particular this relation defines exact values of the constants NPQ for all
pairs of ground state Onsager sectors.

Let us consider the case P < Q, m. Using (45), (46), (15) and (40) we obtain μ = 2m,
α = 0, β = −1, σ = τ = 0. The components (39) of K are

KI = δ|I |,m∏
(cI − cĪ )

, (47)

where cI is the set {cos θi, cos θ ′
j }, i ∈ V , j ∈ W ′ and cĪ is the set {cos θi, cos θ ′

j }, i ∈ W ,
j ∈ V ′. Recall that we are using a quite compact notation which was explained after (38).
Because of the conjugation G in (18) we have to combine V with W ′ and V ′ with W .
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Now using (43) and (47) we get CV,V ′ . From the relations SV,V ′ = CV,V ′ NPQ and SV,V ′ =
1 for W = ∅, W ′ = ∅ we derive

NPQ =
∏m

i,j=1(ci − c′
j )∏m

j=1 tan θ ′
j /2

. (48)

Thus our solution for CV,V ′ implies

SV,V ′ = δ|W |,|W ′|
∏

i∈W

tan θi/2
∏

i∈W ′
cot θ ′

i /2

×
∏

i∈W,j∈V ′(ci − c′
j )

∏
i∈V,j∈W ′(ci − c′

j )∏
i∈V,j∈W(ci − cj )

∏
i∈W ′,j∈V ′(c′

i − c′
j )

. (49)

This formula for SV,V ′ coincides with the formula (45) conjectured by R. Baxter in [13] for
the case P < Q, m. It means that Theorems 1 and 2 prove this conjecture.

Let us consider the case P < Q, m + 1. We have μ = 2m − 1, α = −1, β = 0, σ = 1,
τ = 0. In this case the components of K are

KI = δ|I |,m∏
(cI − cĪ )

∏
(cI + 1)

. (50)

Now using (43) and (50) we get CV,V ′ = SV,V ′ N −1
PQ, where

SV,V ′ = δ|W |,|W ′|
∏

i∈W

sin θi

∏

i∈W ′
(sin θ ′

i )
−1

×
∏

i∈W,j∈V ′(ci − c′
j )

∏
i∈V,j∈W ′(ci − c′

j )∏
i∈V,j∈W(ci − cj )

∏
i∈W ′,j∈V ′(c′

i − c′
j )

, (51)

NPQ =
∏m

i=1(1 + ci) · ∏m

i=1

∏n

j=1(ci − c′
j )∏n

i=1 tan θ ′
i /2

. (52)

This formula for SV,V ′ is again Baxter’s formula in the case P < Q, m + 1.
We have also two other cases corresponding to P > Q which can be considered analo-

gously. In these cases our calculations also prove the Baxter’s formula for SV,V ′ . The first
case is P > Q, m and we have μ = 2m, α = 0, β = 1, σ = τ = 1,

NPQ = (−1)m

m∏

i=1

(1 + ci)

n∏

j=1

sin θ ′
j

m∏

i=1

n∏

j=1

(ci − c′
j ). (53)

The second case is P > Q, m − 1 and we have μ = 2n − 1, α = 1, β = 0, σ = 0, τ = 1,

NPQ = (−1)n

n∏

j=1

sin θ ′
j

m∏

i=1

n∏

j=1

(ci − c′
j ). (54)

3.6 Application: Selection Rules for Spin Matrix Elements

We proved that the non-trivial solution exists if and only if μ is even, α = 0, β = ±1, or
if μ is odd, α = ±1, β = 0. This means that only in these cases we may have non-zero
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matrix elements SPQ = NPQCPQ for spin operators. These selection rules are more fine
than the selection rule by ZN -charge. They follow from (15). For r = Q − P for P < Q,
and r = Q − P + N for P > Q we have two cases where CPQ 	= 0:

• μ = m + n is even and AQ − AP = 0, BP − BQ = N ± N − 2r .
• μ = m + n is odd and AQ − AP = ±N , BP − BQ = N − 2r .

To be precise, these selection rules are not complete because the matrix elements for spin
operators between vectors from two Onsager sectors were found up to a common multiplier
NPQ. For a pair of specific Onsager sectors this multiplier can be zero even if CPQ 	= 0.
Additional information is needed whether NPQ is zero or not.

We have verified these selection rules numerically for N = 3, L = 3. In this case they are
complete, that is all NPQ 	= 0 for the Onsager sectors defined by these selection rules.

4 Factorized Formula for Matrix Elements of Spin Operators for a Finite Chain

4.1 Matrix Elements of Spin Operators Between the eigenvectors of the Hamiltonian

As has been explained in Sect. 3.1, the Hamiltonian of the model restricted to the sector
with charge P is

HP = AP + k′BP − N

m∑

j=1

(
1 − k′ cos θj −k′ sin θj

−k′ sin θj −1 + k′ cos θj

)

j

.

The eigenvalues of HP are

E = AP + k′BP − N

m∑

j=1

±ε(θj ),

where

ε(θ) =
√

1 − 2k′ cos θ + k′2, ε(0) = 1 − k′, ε(π) = 1 + k′.

The −ε(θj ) (resp. +ε(θj )) in the sum corresponds to the presence (resp. absence) of the
excitation with rapidity θj because the change +ε(θj ) to −ε(θj ) increases the energy. The
eigenvector of HP with the lowest energy (that is without excitations) is

(
a0(θ1)

a1(θ1)

)
⊗

(
a0(θ2)

a1(θ2)

)
⊗ · · · ⊗

(
a0(θm)

a1(θm)

)
, (55)

a0(θ) = k′ sin θ√
k′2 sin2 θ + (1 − k′ cos θ − ε(θ))2

,

(56)

a1(θ) = 1 − k′ cos θ − ε(θ)√
k′2 sin2 θ + (1 − k′ cos θ − ε(θ))2

,

with

a2
0(θ) + a2

1(θ) = 1.
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It is useful to express the components ak(θj ), k = 0,1, of the eigenvector through the ener-
gies ε(θ):

a0(θ) =
√

(ε(θ) + ε(0))(ε(π) + ε(θ))

4ε(θ)
,

(57)

a1(θ) = −
√

(ε(θ) − ε(0))(ε(π) − ε(θ))

4ε(θ)
.

The formulas for the eigenvectors with some θj excited are obtained from the formula
for the non-excited eigenvector by just replacing ε(θj ) → −ε(θj ) for all such θj . Therefore
it is sufficient to consider matrix elements of the spin operator only between non-excited
eigenvectors from each Onsager sector and to make the replacement ε(θj ) → −ε(θj ) for all
excited θj in the final formula. We use the same formulas for the sector with charge Q and
with parameters θ ′

j , j = 1,2, . . . , n.
In each Onsager sector V P we call the eigenvector of H with the lowest energy (that is

without excitations) the ground state and denote it |g.s.〉P . The matrix element between the
ground states of two Onsager sectors with charges P and Q, r = (Q − P )modN , is

P 〈g.s.|Zr
1|g.s.〉Q =

∑

V,V ′

∏

i∈V

a0(θi)
∏

i∈W

a1(θi)
∏

i∈V ′
a0(θ

′
i )

∏

i∈W ′
a1(θ

′
i )(SPQ)V,V ′ .

The exact matrix elements (SPQ)V,V ′ are related to the matrix elements (CPQ)V,V ′ defined
by (43), (39) by the relation (44). Then

P 〈g.s.|Zr
1|g.s.〉Q

= NPQ

m∏

i=1

a0(θi)

n∏

i=1

a1(θ
′
i )

∑

V,V ′

∏

i∈W

(
−a1(θi)

a0(θi)
tan

θi

2

) ∏

i∈V ′

(
a0(θ

′
i )

a1(θ
′
i )

tan
θ ′
i

2

)
KI

= (−1)nNPQ(2k′)σ(μ−α)/2+τ(μ+α)/2+(μ2−α2)/4
μ∏

i=1

(
(εi + ε0)(επ + εi)

4εi

)1/2

×
∑

I

∏

i∈Ī

(
εi − ε0

επ + εi

)
δ|I |,(μ−α)/2∏

i∈I,j∈Ī (ε
2
j − ε2

i )
∏

i∈I (ε
2
π − ε2

i )
σ
∏

i∈Ī (ε
2
0 − ε2

i )
τ
, (58)

where we defined εi = ε(θi) for 1 ≤ i ≤ m, εi = −ε(θ ′
i−m) for m < i ≤ m+n and ε0 = ε(0),

επ = ε(π). Also we used

cos θ − cos θ ′ = (ε2(θ ′) − ε2(θ))/(2k′), tan
θ

2
=

√
ε2(θ) − ε2(0)

ε2(π) − ε2(θ)
,

(59)

− tan
θ

2
· a1(θ)

a0(θ)
= ε(θ) − ε(0)

ε(π) + ε(θ)
, tan

θ

2
· a0(θ)

a1(θ)
= −ε(θ) − ε(0)

ε(π) − ε(θ)
.

In order to perform the summation over I in (58) we have to discuss the cases of even and
odd μ separately.
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4.2 Summation in the Case of Even μ

In this case we have α = 0, β = ±1. Let us consider the case β = −1. We have σ = τ = 0.
We use the following summation formula:

∑

I

δ|I |,μ/2∏
a∈I (za + u)

∏
b∈Ī (zb + v)

∏
a∈I,b∈Ī (z

2
a − z2

b)

= (−1)μ(μ−2)/8(u − v)μ/2

∏
c(zc + u)(zc + v)

∏
c<s(zs + zc)

, (60)

which is proved in Appendix A. This formula at zi = εi , i = 1, . . . ,μ, and u = −ε0, v = επ

gives

∑

I

δ|I |,μ/2∏
i∈I (εi − ε0)

∏
i∈Ī (επ + εi)

∏
i∈I,j∈Ī (ε

2
j − ε2

i )

= (−1)μ(μ−2)/8(επ + ε0)
μ/2

∏μ

i=1(εi − ε0)(επ + εi)
∏

i<j (εi + εj )
, (61)

which we use to make the summation in (58):

P 〈g.s.|Zr
1|g.s.〉Q

= NPQ

m∏

i=1

√
ε(θi) + ε(0)

2ε(θi)(ε(π) + ε(θi))

n∏

i=1

√
ε(θ ′

i ) − ε(0)

2ε(θ ′
i )(ε(π) − ε(θ ′

i ))

× (−1)(m+n)(m+n−2)/8+n(n+1)/2(2k′)(m+n)2/4

∏m

i<j (ε(θi) + ε(θj ))
∏n

i<j (ε(θ
′
i ) + ε(θ ′

j ))
∏m

i=1

∏n

j=1(ε(θi) − ε(θ ′
j ))

. (62)

Now let us consider the case of matrix elements between ground states of the ground
state Onsager sectors for which P < Q and m = μ/2. In this case we can use the expression
for NPQ from (48) rewritten in terms of ε(θ)

NPQ = (−1)mn(2k′)−mn

n∏

j=1

√
ε2(π) − ε2(θ ′

j )

ε2(θ ′
j ) − ε2(0)

·
m∏

i=1

n∏

j=1

(ε2(θi) − ε2(θ ′
j )) (63)

(observe that NPQ depends only on the squares of ε’s) to get exact matrix elements of the
spin operator between ground states

P 〈g.s.|Zr
1|g.s.〉Q =

m∏

i=1

√
ε(θi) + ε(0)

2ε(θi)(ε(π) + ε(θi))

m∏

i=1

√
ε(π) + ε(θ ′

i )

2ε(θ ′
i )(ε(θ

′
i ) + ε(0))

×
∏m

i,j=1(ε(θi) + ε(θ ′
j ))∏m

i<j (ε(θi) + ε(θj ))(ε(θ
′
i ) + ε(θ ′

j ))
. (64)
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In the case of general m, n and α = 0, β = 1, σ = τ = 1 the analogue of (62) is

P 〈g.s.|Zr
1|g.s.〉Q = NPQ

m∏

i=1

1

(ε(π) − ε(θi))
√

2ε(θi)(ε(θi) + ε(0))(ε(π) + ε(θi))

×
n∏

i=1

1

(ε(π) + ε(θ ′
i ))

√
2ε(θ ′

i )(ε(θ
′
i ) − ε(0))(ε(π) − ε(θ ′

i ))

× (−1)(m+n)(m+n−2)/8+n(n+1)/2(2k′)m+n+(m+n)2/4

∏m

i<j (ε(θi) + ε(θj ))
∏n

i<j (ε(θ
′
i ) + ε(θ ′

j ))
∏m

i=1

∏n

j=1(ε(θi) − ε(θ ′
j ))

.

(65)

This gives the matrix elements between ground states of the ground state Onsager sectors
for which P > Q and m = μ/2 if one uses the corresponding NPQ from (53). The final
formula is analogous to (64) with additional factor (−1)m and with the replacement of the
sets {ε(θi)} ↔ {ε(θ ′

j )}.

4.3 Summation in the Case of Odd μ

In the case of odd μ we have α = ±1, β = 0. Let us consider the case α = −1. Then σ = 1,
τ = 0.

In this case we will use another summation formula from Appendix A:

∑

I

δ|I |,(μ+1)/2∏
a∈I (za + u)(za + v)

∏
a∈I,b∈Ī (z

2
a − z2

b)

= (−1)(μ+1)(μ−1)/8(u + v)(μ−1)/2

∏
c(zc + u)(zc + v)

∏
c<s(zs + zc)

.

It allows to perform the summation in (58) and get

P 〈g.s.|Zr
1|g.s.〉Q = NPQ

(ε(0) + ε(π))1/2

m∏

i=1

1

ε(π) − ε(θi)

√
ε(θi) + ε(0)

2ε(θi)(ε(π) + ε(θi))

×
n∏

i=1

1

ε(π) + ε(θ ′
i )

√
ε(θ ′

i ) − ε(0)

2ε(θ ′
i )(ε(π) − ε(θ ′

i ))

× (−1)(μ2−1)/8+n(n+1)/2(2k′)(μ+1)2/4

∏m

i<j (ε(θi) + ε(θj ))
∏n

i<j (ε(θ
′
i ) + ε(θ ′

j ))
∏m

i=1

∏n

j=1(ε(θi) − ε(θ ′
j ))

.

(66)

Now let us consider the case of matrix elements between ground states of the ground
state Onsager sectors for which P < Q and m + 1, m = (μ + 1)/2, n = (μ − 1)/2. In this
case we can use the exact expression for NPQ from (52) rewritten in terms of ε(θ):
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NPQ = (−1)mn(2k′)−mn

m∏

i=1

n∏

j=1

(ε2(θi) − ε2(θ ′
j ))

m∏

i=1

ε2(π) − ε2(θi)

2k′

×
n∏

j=1

√
ε2(π) − ε2(θ ′

j )

ε2(θ ′
j ) − ε2(0)

to get the exact matrix elements between ground states:

P 〈g.s.|Zr
1|g.s.〉Q =

m∏

i=1

√
(ε(θi) + ε(0))(ε(π) + ε(θi))

2ε(θi)

×
n∏

i=1

√
1

2ε(θ ′
i )(ε(θ

′
i ) + ε(0))(ε(π) + ε(θ ′

i ))

×
∏m

i=1

∏n

j=1(ε(θi) + ε(θ ′
j ))

(ε(π) + ε(0))1/2
∏m

i<j (ε(θi) + ε(θj ))
∏n

i<j (ε(θ
′
i ) + ε(θ ′

j ))
.

(67)

In the case of general m, n and α = 1, β = 0, σ = 0, τ = 1 the analogue of (66) is

P 〈g.s.|Zr
1|g.s.〉Q = NPQ

(ε(0) + ε(π))1/2

m∏

i=1

1√
2ε(θi)(ε(θi) + ε(0))(ε(π) + ε(θi))

×
n∏

i=1

1√
2ε(θ ′

i )(ε(θ
′
i ) − ε(0))(ε(π) − ε(θ ′

i ))

× (−1)(m+n+1)(m+n+3)/8+n(n+1)/2(2k′)(m+n+1)2/4

∏m

i<j (ε(θi) + ε(θj ))
∏n

i<j (ε(θ
′
i ) + ε(θ ′

j ))
∏m

i=1

∏n

j=1(ε(θi) − ε(θ ′
j ))

.

(68)

It gives the matrix elements between ground states of the ground state Onsager sectors for
which P > Q and m − 1 if one uses the corresponding NPQ from (54). The final formula
is analogous to (67) with an additional factor (−1)n and with the replacement of the sets
{ε(θi)} ↔ {ε(θ ′

j )}.

5 Order Parameters for the Superintegrable Chiral Potts Quantum Chain

5.1 Thermodynamic Limit of Ground State Matrix Elements

For the superintegrable chiral Potts quantum chain with Hamiltonian (1) we have N − 1
order parameters Sr , r = 1,2, . . . ,N − 1, which take non-zero values in the ferromagnetic
phase 0 ≤ k′ < 1 and are defined by the matrix elements between ground states of ground
state Onsager sectors (labeled by charge P ) in the thermodynamic limit:

Sr = lim
L→∞ P 〈g.s.|Zr

1|g.s.〉P+r . (69)
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At 0 ≤ k′ < 1 there is N -fold asymptotic (L → ∞) degeneration of energies of these ground
states. (In fact, for Z3 for 0.901 . . . < k′ < 1 these translation invariant states are not the true
ground states, i.e. states with lowest energies [27, 35, 37]. Due to level crossing, the low-
est energy state becomes non-translationally invariant). In the paper [8], from perturbative
calculations the formula for the order parameters

Sr = (1 − k′2)r(N−r)/(2N2) (70)

was conjectured. Recently this formula was proved by Baxter [10, 11] using functional
relations and analytical properties. Below we derive this formula starting from the exact
results for the matrix elements of spin operator between ground states in the chain of finite
length L.

From (64) the square of ground states matrix elements in the case of m is

P 〈g.s.|Zr
1|g.s.〉2

P+r =
∏m

i=1(ε(θi) + ε(0))(ε(θ ′
i ) + ε(π))∏m

i=1(ε(θi) + ε(π))(ε(θ ′
i ) + ε(0))

×
∏m

i,j=1(ε(θi) + ε(θ ′
j ))

2

∏m

i,j=1(ε(θi) + ε(θj ))(ε(θ
′
i ) + ε(θ ′

j ))
, (71)

where the θi and θ ′
i refer to the Onsager sectors with charges P and P + r , respectively.

In the case m + 1 from (67) the matrix element of the spin operator Zr
1 between the

ground states is

P 〈g.s.|Zr
1|g.s.〉2

P+r =
∏m

i=1(ε(θi) + ε(0))(ε(θi) + ε(π))

(ε(0) + ε(π))
∏n

i=1(ε(θ
′
i ) + ε(0))(ε(θ ′

i ) + ε(π))

×
∏n

i=1

∏m

j=1(ε(θ
′
i ) + ε(θj ))

2

∏n

i,j=1(ε(θ
′
i ) + ε(θ ′

j ))
∏m

i,j=1(ε(θi) + ε(θj ))
. (72)

From (69) and (70) the formula for the order parameters which we have to obtain in the
thermodynamic limit is

lim
L→∞ P 〈g.s.|Zr

1|g.s.〉2
P+r = (1 − k′2)r(N−r)/N2

. (73)

First we consider the case of matrix elements of type (71) when m. Whereas up to now
the θi and θ ′

i were arbitrary, now we take them to be determined by the BAMP-polynomials
of [5, 35]. We use the following relation for the thermodynamic limit:

φ(λ) := lim
L→∞

(
m∑

i=1

log(λ + ε(θi)) −
m∑

i=1

log(λ + ε(θ ′
i ))

)
= r

N
log

λ + 1 − k′

λ + 1 + k′ , (74)

where λ is an arbitrary parameter. The proof of this formula is given in Appendix B. The
thermodynamic limit is taken in such a way as to keep the relation m and values of P and r .
This limit can be realized by adding multiples of N to the chain length L.

Using (74) at λ = ε(0) = 1 − k′ and λ = ε(π) = 1 + k′ we obtain

lim
L→∞

∏m

i=1(ε(θi) + ε(0))∏m

i=1(ε(θ
′
i ) + ε(0))

= (1 − k′)r/N , (75)
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lim
L→∞

∏m

i=1(ε(θ
′
i ) + ε(π))∏m

i=1(ε(θi) + ε(π))
= (1 + k′)r/N . (76)

The thermodynamic limit of the double products in (71) can be calculated along the follow-
ing chain of equalities:

lim
L→∞

log

∏m

i,j=1(ε(θi) + ε(θ ′
j ))

2

∏m

i,j=1(ε(θi) + ε(θj ))(ε(θ
′
i ) + ε(θ ′

j ))

= lim
L→∞

⎛

⎝
∑

i,j

(
log(ε(θi) + ε(θ ′

j )) − log(ε(θ ′
i ) + ε(θ ′

j ))
)

+
∑

i,j

(
log(ε(θ ′

i ) + ε(θj )) − log(ε(θi) + ε(θj ))
)
⎞

⎠

= lim
L→∞

∑

j

(
φ(ε(θ ′

j )) − φ(ε(θj ))
)

= lim
L→∞

r

N

⎛

⎝
∑

j

log(ε(θ ′
j ) + 1 − k′) −

∑

j

log(ε(θ ′
j ) + 1 + k′)

−
∑

j

log(ε(θj ) + 1 − k′) +
∑

j

log(ε(θj ) + 1 + k′)

⎞

⎠

= r

N
(−φ(1 − k′) + φ(1 + k′)) = − r2

N2
log(1 − k′2). (77)

Exponentiating we get

∏m

i,j=1(ε(θi) + ε(θ ′
j ))

2

∏m

i,j=1(ε(θi) + ε(θj ))(ε(θ
′
i ) + ε(θ ′

j ))
→ (1 − k′2)−r2/N2

. (78)

Combining the latter relation with (75) and (76) we obtain (70).
In the case of the matrix elements (72) we have to use the same arguments but instead of

the formula (74) we have to explore the relation

lim
L→∞

(
m∑

i=1

log(λ + ε(θi)) −
m−1∑

i=1

log(λ + ε(θ ′
i ))

)
= r

N
log

λ + 1 − k′

λ + 1 + k′ + log(λ + 1 + k′).

(79)
So, in both cases for the order parameter we obtain the famous result (73).

6 Conclusions

Starting from Baxter’s extension of the Onsager algebra we have found factorized expres-
sions for the spin operator matrix elements between the eigenstates of Hamiltonians of the
finite length superintegrable ZN -symmetric chiral Potts quantum chain up to a scalar factor
for any pair of the Onsager sectors.
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Thus the problem of finding all the matrix elements is reduced to the calculation of these
scalar factors. Derivation of these factors will probably require an information on the Bethe-
states of τ2-model and sl(2)-loop algebra symmetries. Further investigation in this direction
is important since the knowledge of the explicit formulas for the matrix elements will be
useful for the study of the correlation functions of the superintegrable chiral Potts chain
(such correlation functions of the three state superintegrable chiral Potts spin chain of length
3, 4, 5 were studied in [38]). These scalar factors are known for the matrix elements between
the ground states Onsager sectors and this allows to take the thermodynamics limit using
the standard technique and to derive the order parameters of the superintegrable chiral Potts
chain.

In the case N = 2 (the Ising quantum chain in a transverse field) these scalar factors can
be found for all possible pairs of the Onsager sectors. This allows to obtain the factorized
expression for the spin operator matrix elements in this model found in [16] in the framework
of the method of Separation of Variables. We will address this problem in our forthcoming
paper.

In the recent paper [15], Baxter has shown that the determinant representation (7.11)
from [12] implies the factorized formulas for (M(2)

r )2, which in the thermodynamic limit
give the order parameters of the SCPC. Baxter’s formulas for (M(2)

r )2 coincide with our
results (71) and (72). After submitting this paper, an alternative derivation of the spontaneous
magnetization by Au-Yang and Perk appeared on the archive [41].
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Appendix A: Proof of the Summation Formulas

In the case of even μ we have the following summation formula:

∑

I

δ|I |,μ/2∏
a∈I (za + u)

∏
b∈Ī (zb + v)

∏
a∈I,b∈Ī (z

2
a − z2

b)

= (−1)μ(μ−2)/8(u − v)μ/2

∏
c(zc + u)(zc + v)

∏
c<s(zs + zc)

. (80)

We start from the left-hand side. It does not have poles at za = zb . Indeed, such a pole may
arise when a ∈ I , b ∈ Ī . But to each such summand there corresponds a summand with I

replaced by Ĩ = {b} ∪ I\{a}. A straightforward analysis shows that the sum of these two
summands does not contain a pole at za = zb . Therefore the left-hand side can be presented
as

Pμ(u, v; z1, z2, . . . , zμ)∏
c(zc + u)(zc + v)

∏
c<s(zs + zc)

,

where Pμ(u, v; z1, z2, . . . , zμ) is a polynomial of the corresponding variables. Denote by dc

the degree of the rational function in the left hand side of (80) with respect to the variable zc

and estimate it. From the initial sum we have dc ≤ −μ − 1. From the factorized expression
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we have dc = degzc
Pμ − μ − 1. Hence degzc

Pμ = 0. That is Pμ does not depend on zc for
all c.

To find Pμ(u, v) let us analyze the pole at z1 → −z2. Such pole arises if 1 ∈ I , 2 ∈ Ī

or if 2 ∈ I , 1 ∈ Ī . Then we separate factors depending on z1 and z2 and denote by I ′ and
Ī ′ the sets I and Ī with 1 and 2 excluded. At z1 → −z2 the summation is reduced to the
summation over I ′ reducing the calculation of the sum to the same problem for μ − 2. It
gives the recurrent relation

Pμ(u, v) = (−1)(μ−2)/2(u − v)Pμ−2(u, v).

Calculating explicitly the sum at μ = 2 we get P2(u, v) = (u − v). Therefore Pμ(u, v) =
(−1)μ(μ−2)/8(u − v)μ/2. This proves the summation formula for even μ.

The summation formula for odd μ

∑

I

δ|I |,(μ+1)/2∏
a∈I (za + u)(za + v)

∏
a∈I,b∈Ī (z

2
a − z2

b)

= (−1)(μ+1)(μ−1)/8(u + v)(μ−1)/2

∏
c(zc + u)(zc + v)

∏
c<s(zs + zc)

can be proved in the same way.

Appendix B: Proof of (74)

The aim of this Appendix is to prove (74) and (79). The proof is close to the derivation
presented in [39].

We use the BAMP polynomial in eNu of degree m

ΨP (u) = e−Pu

N−1∑

k=0

ωPk

(
1 − eNu

1 − ω−keu

)L

. (81)

In most papers the polynomial (81) is written in terms of the variable z = eu ([5], similarly
in [35] etc.). The zeros of the polynomials ΨP are known to be all simple and to come on
the negative real axis of the variable zN . For the following, the use of the variable u will be
useful: so, (81) has simple zeros at u = u1, u2, . . . , um, where u1, u2, . . . , um can be chosen
to have imaginary part π/N . Each zero eNuj of this polynomial corresponds to a real value
of θj , calculated through the relation

cos θ = (1 + eNu)/(1 − eNu).

This relation also implies that Reu → −∞ corresponds to θ = 0, ε(0) = 1−k′, Reu → +∞
corresponds to θ = π , ε(π) = 1 + k′.

We present the following sum as an integral along the contour C1 shown in Fig. 1:

m∑

i=1

log(λ + ε(θi)) =
∮

C1

log

(
ε(θ) + λ

1 + k′ + λ

)
Ψ ′

P (u)

ΨP (u)

du

2π i

+ log(1 + k′ + λ)

∮

C1

Ψ ′
P (u)

ΨP (u)

du

2π i
. (82)
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Fig. 1 Integration contours
C1,C2,C3 used in Appendix B

The motivation for introducing the denominator log(1 + k′ + λ) in the first term of r.h.s of
(82) will be given below. The integral in the second term gives m. The other sum entering
(74), (79), and corresponding to sector with charge P +r , is given by a similar relation where
the second term is n log(1+k′ +λ). In the case of (74) we have m and the difference of these
terms disappears. In the case of (79) we have m + 1 and the difference is log(1 + k′ + λ).

Let us analyze the first integral from the right-hand side of (82). Its integrand is analytic
in the domain enclosed by contours C1 and C3 except for the simple poles enclosed by C1

and a branch cut (where ε(θ) is pure imaginary) on the negative real axis along the segment
u ∈ [logp,0] (enclosed by C2), where

logp = 2

N
log

1 − k′

1 + k′ < 0.

At u → 0, ε(θ) → ∞. At u → logp, ε(θ) → 0.
The integral with the same integrand along the contour C1 − C3 gives 0. Indeed, the

integral along the horizontal lines vanishes due to the periodicity of integrand under the
transformation u → u + 2π i/N . The integral along the right vertical segment vanishes due
to

log

(
ε(θ) + λ

1 + k′ + λ

)
→ 0.

This gives the motivation for introducing the denominator 1 + k′ + λ in the first integral
in (82). The integral along the left vertical segment vanishes since ΨP (u) is a polynomial
in eNu with non-zero free term and therefore Ψ ′

P (u)/ΨP (u) ∼ eNu → 0 as Reu → −∞.
Therefore instead of the integration along C1 we may integrate along C3.

Now we shrink the contour C3 to C2, that is around the branch cut. On C2, the term in
(81) with k = 0 exponentially dominates as L → ∞. Indeed, the absolute value of the ratio
of the term k = 0 and any other term k 	= 0 is the L-th power of

|1 − ω−keu|
1 − eu

> 1

with the left-hand side of the inequality minimized at u = logp. Therefore in thermody-
namic limit we can ignore the terms with k 	= 0 in the polynomial (81) and replace it by

e−Pu[(1 − eNu)/(1 − eu)]L
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in the integral along C2. Finally we expand the contour to C3 and get

1

2π i

∮

C3

log

(
ε(θ) + λ

1 + k′ + λ

)(
−P + L

(
− N

1 − e−Nu
+ 1

1 − e−u

))
du.

The terms proportional to L dominate at L → ∞ but they do not depend on P and so they
disappear in (74) and (79). Therefore the left-hand side of (74) in the limit L → ∞ becomes

−P − (−(P + r))

2π i

∮

C3

log

(
ε(θ) + λ

1 + k′ + λ

)
du

= r

2π i
log

(
1 − k′ + λ

1 + k′ + λ

)∫ −∞+iπ/N

−∞−iπ/N

du = r

N
log

(
1 − k′ + λ

1 + k′ + λ

)
,

where we used the fact that the integral along the horizontal lines vanishes due to the period-
icity of the integrand, and along the right vertical line due to vanishing the integrand. Only
the left vertical line gives a constant contribution. Recall that Reu → −∞ corresponds to
θ = 0, ε(0) = 1 − k′. In the case of (79) we have the same result but with the additional term
log(1 + k′ + λ) as was explained above.

Appendix C: Numerical Verification

Before starting our research we implemented a numerical verification of the finite-size for-
mula (71), and compared this to the exact thermodynamic limit formula (70) for the order
parameter. We approximate the angles θi and θ ′

i for L → ∞ as [40]

cos θl = sinN(Kl + π/N) − sinN(Kl)

sinN(Kl + π/N) + sinN(Kl)
,

Kl = 2Nl + 2Q − N

2NL
π, l = 1,2, . . . ,m. (83)

We fix k′ = 0.8 and obtain:

N = 3, L = 300, r = 1:
Numerical calculation of (71) with (83): |Q=1〈S〉Q=2|2 = 0.796894034089816
Analytic formula: (1 − k′2)2/9 = 0.796893997784373
Error: 3.63054 × 10−8

N = 5, L = 300, r = 1:
Numerical calculation: |Q=1〈S〉Q=2|2 = 0.8491969001045062
Analytic formula: (1 − k′2)4/25 = 0.8491969000417509
Error: 6.27554 × 10−11

N = 5, L = 300, r = 2:
Numerical calculation: |Q=1〈S〉Q=3|2 = 0.7825509089016481
Analytic formula: (1 − k′2)6/25 = 0.7825509088837955
Error: 1.07617 × 10−11

These results of the numerical verification encouraged us to look for an analytical proof
of (71).
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